Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments.
نویسندگان
چکیده
The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C(1)-utilizing Methanolobus and Methanococcoides and the H(2)-utilizing Methanogenium: Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments.
منابع مشابه
Distribution of methanogenic and sulfate-reducing bacteria in near-shore marine sediments.
The distribution of methanogenic and sulfate-reducing bacteria was examined in sediments from three sites off the coast of eastern Connecticut and five sites in Long Island Sound. Both bacterial groups were detected at all sites. Three distributional patterns were observed: (i) four sites exhibited methanogenic and sulfate-reducing populations which were restricted to the upper 10 to 20 cm, wit...
متن کاملComparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages...
متن کاملSpecific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters.
The subsurface of a tidal-flat sediment was analyzed down to 360 cm in depth by molecular and geochemical methods. A community structure analysis of all three domains of life was performed using domain-specific PCR followed by denaturing gradient gel electrophoresis analysis and sequencing of characteristic bands. The sediment column comprised horizons easily distinguishable by lithology that w...
متن کاملMicrobial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin
The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) cov...
متن کاملMicrobial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor.
Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 6 شماره
صفحات -
تاریخ انتشار 2003